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EQUILIBRIUM INSTABILITY IN A POTENTIAL FIELD, 
TAKING ACCOUNT OF VISCOUS FRICTION* 

V.V. KOZLQV 

The influence of dissipative forces on the equilibrium stability of natural mech- 
anical systems is studied in this note. It is proved that if the analyticpotential 
energy has no local minimum at equilibrium, then this equilibrium will be unstable 
after the addition of arbitrarily small dissipative fosces. 

1. Hypothesis on instability. Let us consider a natural mechanical system with n 

degrees of freedom whose generalized coordinates are (zl,....zn)= x. Let K(x',x)= Lai~(x)zt'z~' be 
the kinetic, and R (x1,..., zn) the potential energy of this system. The critical points of the 
function II(x)and only they are equilibrium positions. Everywhere beneathof r=Oisacritical 
point of function II(x) and U(O)=O.If the potential energy has a strict local minimum at the 
equilibrium position, then the equilibrium is stable (Lagrange theorem). There is an assump- 
tion that when the system is analytic (i.e., the functions at](x) and II(x) are analytic),and 
the potential energy has no local minimum at the equilibrium position, then the corresponding 
equilibrium state is unstable. An analogous assertion is apparently valid even for the in- 
finitely differentiable case, however, as the known Painlevg-Wintner example shows 

K = Y*/z, n c2) = exp 2-* cos 2-l (~+o, n (0) = 0) 

in addition it is necessary to required isolation of the equilibrium position (or at leastthe 
absence of critical points of the function U(x) in the domain {s: II(r)<O~ ilxn<~) for small 
e>O). The proof of these assumptions is a complex problem, solved only in certainparticular 
cases (see /l-33/, for example). 

2. Instability of equilibrium subjected to viscous friction. Let US assume 
that the nonpotential forces F (x, x') act on the system and Rn (x} x R"(x')- Rn are certainsmooth 
vector functions. The equations of motion will have then the following form 

-$~-z&F(X,**)> L=K-n 

We designate the nonpotential forces F the viscous friction forces if F&0)=0 and E'<O 
for x'#O; here E= K+ n is the total system energy (compare with /4/, Ch. VIII). It is easy 
to verify that the equilibrium positions of the new mechanical systems will again agree with 
the critical points of the function II(x). The equilibrium states, which are stable according 
to the Lagrange theorem, here remain stable even upon the addition of viscous friction forces. 
In the next section we prove the following theorem. 

Theorem. Let the point x=0 not be a local minimum of the function II(x). Theequilibrium 
state (x,x')=(O,O) of the system (1) is unstable if one of the following conditions is satis- 
fied : 

A) The function II (+,..., s") is expanded in a convergent power series in 51.. . .,+I in the 
neighborhood of zero; 

B) The function U(x) is infinitely differentiable in the neighborhood of zero and there 
are no critical points in the domain (x:II(x)<O,[IIII<~) for a certain e>o. 

The formulation of the equilibrium stability problem in the presence of viscous friction 
and the assertion just formulated go back to PoincarG studies on the stability of the figures 
of equilibrium of a rotating fluid with energy dissipation taken into account/4/.Thistheorem 
can be considered as a generalization of known results of Kelvin /2,4/, Chetaev /2/,Salvadori 
/5/, and other authors about the influence of dissipative forces on the stability of equili- 
brium. We are not so much interested in the fact of the instability of the equilibrium posi- 
tion as on the mechanism of this phenomenon that will be explained during the proof of the 
theorem. 
- 
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3. Proof of the theorem, Case B. Let us examine the motion r(t) with the following 
initial data: x (0) = xg, x' (0) = 0; II (xc} < 0 and l/xc iI< 8. Let us prove the existence of a certain 
small number B>U such that if ~x'(t)/I<8 then K"(x(t),x(i))>,~~ >O(ci, as well as the numbers oz.. 
..,e,to be defined below, are independent of the time but dependent on E and the initial con- 
ditionsl . To do this, we use the Legendre transformation p= ~3Kl8r' and the "canonical" equa- 
tions 

aK an 
p'=----a,+F(x,p), xk% 

Evidently F&O)= 0. We first evaluate 

Furthermore 

i?K aA! ax an ai( -- K'=Bpp‘+axx“- ap ax +apF(x,P) 

where (,) is the ordinary scalar product in R", and the smooth function Q?(x,p)vanishes for 
p = 0. Since E'(x,x')<O and E(xt,,xo')= II( then the trajectory of the motion x(t) lies in 
the domain U= (x:H(x)~II(~o)<O) for Z&O. There are no critical points of the function 
H(x) in this domain for [xl/ge, the metric I((x,p) is nondegenerate, and therefore, forsmall 
6>0 the estimate K">Q>O will follow from the inequality //r'// <a - 

Since E'=f(x,n')= 0 only for x'= 0, but f<O for the remaining values of the velocity, 
then for KE U c] (/Iarl[<e) and S/Z<! x.I[<E the function will be f= E'<- ca(ca>O). We will prove 
that E (x (t), x‘ (t)) - --oo as t+ im, if j/s @)[I < E and lir' (f) I/ < 8. This contradiction will prove 
the instability of the equilibrium state (X,X')= (0,o). 

Indeed for llx(t)ll< E and [Ix’ (t)jl<e the function 1 K'(t)\ < ca (+>O). If at a certain time 
[ix’jl<8/2, then after a finite time interval (because of the estimate IK.1 < c,,K”>c,) the quant- 
ity 1ix.i will not become less than 6. The time segment A when #x'il is increased from 612 
to 8, allows the estimate A>s>O. During this time E'< --c,<O and, therefore, the function 
E is diminished by at least c$== c,c,>o. Hence, if a sequence (QJ, tk -+ 00 (k _ M) such that 
11~' (tk)/I<8/2, then evidently E (t)* -00 as t -+ m . If 11x-(t)j[>8/2 starting with a certain time, 
then again E(a)-+-= as t-w. 

The case A is derived from case B since for sufficiently small E>O there exists just 
the zero-th critical value of the analytic function U:{x:lixli <E} -R (see /6/J. 
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